Reconstruction in MicroBooNE using OpenCV Image Processing

Ariana Hackenburg, Yale University
New Perspectives 2016

Motivation

Why π 0?

 Important background to understand for low energy excess search

_____V

 Can learn about particle that produced electromagnetic showers by looking at shower energies (E1, E2) and 3D opening angle (Θ_{Υγ})

$$m_{\pi^0} = \sqrt{2E_1E_2\left(1-\cos heta_{\gamma\gamma}
ight)}$$

Motivation

MicroBooNE is a Liquid Argon Time Projection Chamber (see D. Caratelli's talk "MicroBooNE in 10 Minutes")

Ionization charge drifted to wire planes contains interaction information

Motivation

MicroBooNE is a Liquid Argon Time Projection Chamber (see D. Caratelli's talk "MicroBooNE in 10 Minutes")

Ionization charge drifted to wire planes contains interaction information

How can we group charge depositions meaningfully?

Motivation – Clustering Example

Traditional (Fuzzy) Clustering

Traditional clustering output suggests many cluster topologies to account for in downstream algorithms

Can we do better?

Note : Colors represent individual clusters and are uncorrelated across planes

Outline

- 0) Motivation
- 1) What is OpenCV?
- Clustering hits with image processing
- 3) Parameter Finding
- 4) Reconstruction

What is OpenCV?

- Open source computer vision library
- Functions and classes to aid in pattern recognition and image processing
- World wide community contributing to algorithm development
- Efficient, fast and easy to use

Examples of OpenCV in Action

Example of Canny edge detection

Example of contour finding; each color represents contour

Outline

- 0) Motivation
- 1) What is OpenCV?
- 2) Clustering hits with image processing
- 3) Parameter Finding
- 4) Reconstruction

- Size of image determined by wire and time tick ranges
- Scale charge to 8
 bits; this results in
 single channel
 gray scale image

OpenCV Function: "findContours"

Conclusion: Initial image is too granular; need to manipulate image prior to contour finding

OpenCV Function: "dilate"

<u>Dilation</u>: Set pixels within dilation radius around hit to grayscale value of that hit to connect hits

OpenCV Function: "blur"

Blur: Gaussian filter smoothes edges of dilated image

OpenCV Function: "threshold"

Threshold: Convert pixels above some grayscale threshold value to 1's, those below to 0's.

OpenCV Function: "findContours"

Contours: Lastly, we apply contour finding on the thresholded image and associate pixels to each contour

Clustering Comparison

OpenCV Clustering

OpenCV does better job in the first pass of clustering!

Outline

- 0) Motivation
- 1) What is OpenCV?
- Clustering hits with image processing
- 3) Parameter Finding
- 4) Reconstruction

Parameter Finding – Region Of Interest

Can deterministically cluster if passed an ROI by selection algorithms, Deep Learning, etc

Parameter Finding – ROI

Can use interaction vertex from ROI to assign cluster start point, direction

Colors uncorrelated

Merge Missing Charge

Expand triangle from start point along direction to merge excess charge

Colors uncorrelated

Outline

- 0) Motivation
- 1) What is OpenCV?
- Clustering hits with image processing
- 3) Parameter Finding
- 4) Reconstruction

Cluster Matching

- Only need two planes to do reconstruction; in this case, matches are found between planes U and Y
- Clusters matched according to similarity in shared coordinate, time

Conclusion

- OpenCV is pattern recognition software with easy to use algorithms and classes.
- We can use OpenCV to manipulate our event images, contour find, and form clusters.
- OpenCV identified clusters can be assigned parameters and successfully reconstructed for use in physics analysis

